
Algo-Mate

A. Bochman, L. Dias, N. Lamberson, & D. Lamoreaux

University of Massachusetts Lowell — Software Engineering II Prof. James Daly

Motivation

Whenever programmers need to find code snippets, design patterns, or need help
understanding how a design pattern is implemented, they generally find themselves on websites
like Stack Overflow and CPP Reference to find solutions to their problems and outlines for
commonly used patterns to insert into their code. Whether a programmer is just starting to
experiment with these extremely important programming standards, or has to learn them a new
language, many spend a large amount of their time that could be used productively searching the
internet for the proper syntax for the language they are coding in.

One issue that we face every day as programmers is the constant threat of distraction.
According to Gloria Mark of the Department of Informatics at the University of California1, it
takes the average person 23 minutes and 45 seconds to return to a task fully after a distraction,
and there are no stronger distractions than the vast world of the internet. A single moment of
weakness, or a simple mis-click might land someone at the front page of Reddit, for instance,
and they may find themselves reading click-bait articles for hours.

There is a strong need for a solution within the IDE for references on how to complete
these specific objectives, and while there are currently some code completion capabilities built
into Visual Studio Code, they only cover basic snippets such as loops. Our goal is to add more
functionality by including code insertion for several common design patterns with assisted
completion and helpful comments to get users on the right track without the risk of distraction.

Objectives

The Algo-Mate team wants to streamline the insertion of common blocks of code to
prevent programmers from losing focus of Visual Studio Code (VS Code) while increasing
productivity. In other words, we’re making tedious design patterns easier to implement across
multiple programming languages. Ideally for users of VS Code, gone will be the days where you
transition from C++ to Java to Python back to C++ and forget the exact syntax of writing a
design pattern. With Algo-Mate, the buttons, controls, and auto-completed code snippets we’re
proposing will aim to increase the efficiency, productivity, and even enjoyability of writing code
in supported languages.

A simple help menu will be placed on the status bar at the bottom of each window will
provide the user with a list of the design patterns which are implemented in Algo-Mate in each

1 https://www.ics.uci.edu/~gmark/chi08-mark.pdf

programming language. When a user selects a language and an algorithm they will be linked to a
reputable website which provides thorough information on the use and implementation of the
design pattern.

We’ve settled on implementing support for the C++ language first as the team has the
most experience with it. Depending on how development pans out given our ~3-month deadline,
support for Java, JavaScript, and Python will be considered, in this order. The language of the
file in the editor is detected by the extension. Typing short codes or common phrases associated
with a design pattern will allow the user to autocomplete a design pattern by hitting enter or
clicking the desired option in the dropdown menu. Additionally, inline comments will
accompany the auto-completed code to provide useful information on how the design pattern
works, and what data is required to populate the remainder of the algorithm.

Finally, a web page will be developed to act as a hub for the project and will contain
relevant information on all aspects of the project. This list includes: an overview with a synopsis
and eventual demo video; members section with information and links to each members’
LinkedIn, GitHub, personal website, and email; an updates section for release notes, documents,
and resources; and finally, external links will be provided to private sections and the project’s
source code.

Milestones

The first major milestone which was completed during the mid-semester week had to be
adjusted as our implementation plans changed. Initially by March 5th, 2021, we planned to have a
functional webpage on GitHub with appropriate tabs for the project, four implementations of
algorithms to be auto-completed and a barebones functionality of the extension is published to
the VS Marketplace. Due to our shifting towards implementing completion for design patterns,
we were only able to implement one completion: Singleton pattern, however we met all other
goals that we set. Having a functional webpage operational early will allow the team to use it as
a progress tracker. As we continue the project, new deliverables and release notes will be
published regularly as the semester progresses. When the semester comes to pass, the webpage
will be completed and will act as an accurate record for anyone interested in the Algo-Mate
project.

The other major component of Algo-Mate is the UI. Buttons and options have also
already been implemented as part of our second milestone to allow the user to control certain
parts of Algo-Mate and use the help menu to find information on the design patterns they wish to
insert. The UI was completed by March 26th, 2021 as planned. Auto-completion of four design
patterns: Singleton, Builder, Adapter, and Observer will be implemented in C++, Java,
JavaScript, and Python by April 19 th, 2021.

As we approach the final major milestone, we will complete the final bug fixes, wrapping
up the code by April 21st. The demonstration video and final presentation will be completed by
April 24th. This will allow for any small edits to be made before the final week of classes, which
takes place starting April 26 th, 2021. Completing the project before this week is essential because

the demonstration video, class presentation, and final iteration of the project web page depend on
it. The Algo-Mate team will spend the weekend of April 24th & 25th rehearsing the presentation
before presentations begin the following week.

Approach

Algo-Mate will implement 4 total design patterns, aiming to reach the most common and
useful patterns. These design patterns will be implemented in C++ from the start, and then
implemented in Java, JavaScript, and Python as the project progresses. The 4 design patterns will
fall into 3 categories, creational, structural, and behavioral. Creational design patterns focus on
creating objects and initializing classes. Structural design patterns are focused on forming larger
structures through the combination of classes and objects. Lastly, behavioral design patterns
focus on identifying communication between objects, determining their responsibilities. Within
these groups of design patterns, we plan on implementing:

1. Singleton (Creational)
2. Builder (Creational)
3. Adapter (Structural)
4. Observer (Behavioral)

These design patterns will autofill similar to how IntelliSense works in VS Code,
retrieving the templates from a JSON file that stores the keywords and their corresponding
design patterns. IntelliSense autofill works by analyzing what the user is typing and displays
suggestions based on the input. For Algo-Mate, this will behave the same way, where words like
“singleton” or “builder” can be typed into a file in VS Code and Algo-Mate will give the
suggestion to autofill. This can be seen in Figure 1 below:

Figure 1. Use Case Diagram - Selecting Design Patterns with Algo-Mate

After determining the correct design pattern to autofill (see Figure 2), the respective
design pattern will be placed into the file you are working on, containing comments on how the
pattern works. These comments will detail the operation of the design pattern and point the user
in the right direction when choosing what variables to make edits to in order for the design
pattern to be effectively implemented into their project (see Figure 3). Algo-Mate will give you
the option to step through the design pattern, changing key variables and values to update the
template to your use case.

Figure 2. Design Pattern Auto-Completion: Singleton

Figure 3. Singleton Design Pattern Template

Alternatively, this can be accomplished through the Algo-Mate UI located at the bottom
of the status bar in VS Code (see Figure 4 & Figure 5 below). By clicking the Algo-Mate option
in the status bar, we can select a design pattern and the language we wish for it to be written in,
and insert it into the file we are currently working within.

Figure 4. GUI Design Pattern Selection Options

Figure 5. GUI Languages Selection Options

These interactions are depicted in Figure 6 below, where a user opens VS Code, and
begins to type in a design pattern, letting Algo-Mate autocomplete the design pattern or by
selecting the design pattern through the GUI. We saw this be completed in Figures 2 & 3 for
typing the design pattern, or in Figures 4 & 5 for going through the GUI.

Figure 6. Design Pattern Sequence Diagram - Selecting Design Patterns

Currently, something like this does not exist within the VS Code marketplace, leaving a
huge opening for Algo-Mate to fill. Algo-Mate will improve upon the foundations of
IntelliSense, while adding robust functionality for design patterns in the process. With the
addition of comments to the template, Algo-Mate aims to remove the friction of learning design
pattern templates, and allows users to get right into implementing them within their projects.
With a deeper understanding of the design patterns provided, we hope users will be able to
broaden their techniques without spending hours of time researching exactly how to implement
each design pattern from scratch.

Building and Testing

Building Algo-Mate can easily be accomplished by following the instructions2 below:

Download and Use Extension
1. Make sure Visual Studio Code is installed. Download here:

https://code.visualstudio.com/download
2. Download and install the extension

a. Option 1: From Visual Studio Marketplace:
https://marketplace.visualstudio.com/items?itemName=AlexBochman.algo-mate

b. Option 2: From within VS Code, click on the extensions tab on the left-hand
sidebar and search for "Algo-Mate"

Clone, Build, Develop, and Test Instructions
1. Make sure Visual Studio Code is installed. Download here:

https://marketplace.visualstudio.com/items?itemName=AlexBochman.algo-mate
2. Clone the latest version of Algo-Mate: https://github.com/alexbochman/Algo-Mate.git
3. Open the Algo-Mate project in VS Code

a. Make any changes to the files in the "src" folder, or the package.json
4. Click Run > Start Debugging to test Algo-Mate
5. In the VS Code development window that pops up

a. You'll see [Algo-Mate] on the status bar. Clicking it will bring up UI options.
b. Typing out any of the prefixes from any of the JSON files within a file that

qualifies (.cpp, .java, .js, .py) will display design patterns that can be
autocompleted.

c. After autocompleting a design pattern, points of interest (POI) will be highlighted.
They can be modified, and groups of POIs will be changed automatically while
still highlighted.

d. Hitting tab will navigate to the next POI.
e. Hitting shift+tab will navigate back to the previous POI.

Currently, Algo-Mate has Continuous Integration (CI) being accomplished through
Travis CI. It is linked to the GitHub repository and runs testing every time a commit is pushed to
GitHub. These test cases are being built out as functionality is added. Currently, we have 2 tests
being done through Jest, one that passes the build and one that fails the build, all being shown on
the build history on Travis CI3.

3 https://travis-ci.com/github/alexbochman/Algo-Mate/builds

2 https://github.com/alexbochman/Algo-Mate/blob/master/README.md

https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=AlexBochman.algo-mate
https://marketplace.visualstudio.com/items?itemName=AlexBochman.algo-mate
https://github.com/alexbochman/Algo-Mate.git

Results

By the time Algo-Mate was graded for its architecture design, we realized the novelty
and usefulness of our project was holding it back. We pivoted and came up with a plan to
develop an extension centering around design patterns instead of basic algorithms. See the
extensive results list below:

● We’ve implemented autocompletion for the singleton design pattern for C++ within our
cpp.json file. Additionally, this allows users to tab back and forth to different points of
interest (POI).

● We’ve published the extension to the VS Code extension store using node package
manager.

● We’ve tested autocompletion between different file types. For example, autocompleting
the singleton design pattern will check what the user’s current file type is, and will pull
the design pattern from the correct JSON file. In short, you won’t see JavaScript code in a
C++ file. This is due configurations within our package.json file.

● We’ve published a web page to compile all of the extension’s information and
documentation.

● Building and testing:
○ Created a YAML file (.travis.yml) to automate building and testing.
○ Configured Travis CI to work with the GitHub repository.
○ Wrote basic tests that failed and succeeded when expected.
○ Wrote tests that implemented VS Code extension API. This is currently an issue

as our testing frameworks don’t recognize VS Code API, causing errors, and
causing our builds to fail.

● GitHub repository: https://github.com/alexbochman/Algo-Mate
● Algo-Mate extension download for VS Code:

https://marketplace.visualstudio.com/items?itemName=AlexBochman.algo-mate
● Project webpage:

https://alexbochman.github.io/ClassesAndProjects/SW-Eng/Algo-MateProject/Algo-Mate
.html#

Ensuring Algo-Mate is working consistently is key to a user's experience. For this reason,
we want to ensure the time to insert a design pattern of a certain language is consistent, and does
not take long. To ensure Algo-Mate is performing as intended we have created an automated
script to run insertions of a design pattern and records the time it takes to complete this
operation. This script is located within the “user-interface.js” file, where once the Algo-Mate
application is activated, the function getBuildData will run automatically. It will run 100
insertions of a design pattern, recording the time (in milliseconds) it takes to complete the

https://github.com/alexbochman/Algo-Mate
https://marketplace.visualstudio.com/items?itemName=AlexBochman.algo-mate
https://alexbochman.github.io/ClassesAndProjects/SW-Eng/Algo-MateProject/Algo-Mate.html#
https://alexbochman.github.io/ClassesAndProjects/SW-Eng/Algo-MateProject/Algo-Mate.html#

operation. It then converts this data to a csv called “data.csv” and exports it to the users
workspace.

This data allows us to see variations in the insertion times, identifying where issues may
be arising. After this data is gathered we can generate a histogram for each design pattern and see
the range of insertion times for each design pattern. An example can be seen in Figure 7 below,
where we take 100 runs of the Singleton design pattern insertion and generate a histogram
showing the times it took to complete this operation.

Figure 7. Average Insertion Time For Singleton Design Pattern

This figure can be generated by running the “Algo_Mate_Results.py” file using the
following command “python3 Algo_Mate_Results.py data.csv” where the csv file we are using
is provided as a command line argument. This csv is generated beforehand using the
“user-interface.js” file, as mentioned above. More information on running this can be found
within Algo-Mate’s README.

Deliverables

The proposed deliverable for this project is a Visual Studio Code extension which will be
used to insert code fragments and design patterns with comments to help the user implement
them easily into their code. This plugin will initially be built out for C++, and as the project
develops we will implement design patterns for Java, JavaScript, and Python (in this order). The
Algo-Mate extension extension itself will be built using JavaScript, and will be capable of

detecting what language the current file is written in, allowing for the correct design pattern to be
placed in without the user selecting which language they are using.

For each language, we will implement four total design patterns in a JSON file which will
be supported within Algo-Mate: Singleton, Builder, Adapter, and Observer. These will cover the
3 types of design patterns, that being creational, structural, and behavioral. Included in the
extension will be a readme file to help users install and quickly begin using the extension. This
readme will contain instructions on how to select design patterns, choose the right language, edit
the templates, and more.

Risks

The potential risk factors for the Algo-Mate project involves certain conflicts with the
structural, behavioral, and creational design patterns. Creational patterns such as the Singleton
pattern, may be difficult to complete successful unit tests because most testing frameworks rely
on inheritance when it mocks objects. This can be a problem because the singleton class is
private and having to override static methods is usually impossible in most languages. The
Adapter Structural Pattern can also be a problem due to its overall complexity. If the user were to
implement the Adapter Pattern, they may need to create new interfaces and classes that match the
rest of their code. Our solution to these issues is to provide comments and tips within the design
patterns to help the user understand how it works so they can integrate it well enough with their
code. It is important that we have all design patterns be as straightforward as possible in order to
prevent future contingencies for the user.

The other issue we may face is the number of patterns in different languages we’ll be able
to create by the deadline. As mentioned before, we plan on creating algorithms in C++ since it’s
the language we’re most familiar with and will try to implement as many as possible. However,
creating algorithms in different languages such as Python, Java, and JavaScript may be more
time consuming and it will depend on how much time we have left.

Fortunately, everyone in the group is familiar with the VS Code API4 and is comfortable
with creating this extension in JavaScript. The main payoff for this project is that users will have
access to a list of common design patterns that can be used with their code rather than having to
look up the algorithm’s basic structure. By doing this we get to learn more about the different
design patterns ourselves and we plan on spreading our knowledge to the user. Overall, the
estimated time we plan on spending on this project is about 3-4 hours a week for each person and
possibly more depending on the challenges we may face along the way.

Feedback

● Addressed concerns with Algo-Mate applying to too niche of an audience with just
algorithms. Shifted to a focus on design patterns to allow for a broader, more defined use
case.

4 https://code.visualstudio.com/api/references/vscode-api

● Adjusted the potential risks the user may face now they’re focusing our project towards
different design patterns instead of generic algorithms.

● Fixed the use-case diagram in Figure 1 so it addresses its structural design and
background process.

● Adjusted the sequence diagram in Figure 2 as a triggered event instead of a loop and
showed how the user interacts with Algo-Mate.

● Addressed issues of explaining UI elements and not showing them in use.

Schedule

Date Goal

February 18th, 2021 Proposal Completion – Compile each component of the proposal that was
divided among the members

February 19th, 2021 Proposal Due Date – Proofread and submit proposal before class

February 26th, 2021 Work on auto-completion of design patterns in C++

March 5th, 2021
Mid-semester week

● Have a working webpage up this week with these sections: overview,
members, updates, and a link to GitHub

● Complete implementation of auto-completion for four design patterns
in C++.

● Publish this version on the Visual Studio Marketplace

March 26th, 2021 Finish UI

April 19th, 2021 Finish auto-completion of four design patterns in each of our four
languages: C++, JavaScript, Java, and Python

April 21st, 2021 Finalize bug fixes, ensure code is in a polished and functional state

April 24th, 2021 Complete the final presentation and begin rehearsing

April 26th-April 30th,
2021
Final week of classes

● Completion of the webpage
● Publish completed extension on Visual Studio Marketplace
● Complete and submit final reports and demonstration video
● Present completed project to the class during this week

